1,821 research outputs found

    Magnetic and Transport Properties of Fe-Ag granular multilayers

    Full text link
    Results of magnetization, magnetotransport and Mossbauer spectroscopy measurements of sequentially evaporated Fe-Ag granular composites are presented. The strong magnetic scattering of the conduction electrons is reflected in the sublinear temperature dependence of the resistance and in the large negative magnetoresistance. The simultaneous analysis of the magnetic properties and the transport behavior suggests a bimodal grain size distribution. A detailed quantitative description of the unusual features observed in the transport properties is given

    The role of tidal interactions in driving galaxy evolution

    Full text link
    We carry out a statistical analysis of galaxy pairs selected from chemical hydrodynamical simulations with the aim at assessing the capability of hierarchical scenarios to reproduce recent observational results for galaxies in pairs. Particularly, we analyse the effects of mergers and interactions on the star formation (SF) activity, the global mean chemical properties and the colour distribution of interacting galaxies. We also assess the effects of spurious pairs.Comment: to appear in "Groups of galaxies in the nearby Universe" ESO Workshop, (Dec 2005) Santiago, Chil

    Preparation and characterization of in situ polymerized cyclic butylene terephthalate/graphene nanocomposites

    Get PDF
    Graphene reinforced cyclic butylene terephthalate (CBT) matrix nanocomposites were prepared and characterized by mechanical and thermal methods. These nanocomposites containing different amounts of graphene (up to 5 wt%) were prepared by melt mixing with CBT that was polymerized in situ during a subsequent hot pressing. The nanocomposites and the neat polymerized CBT (pCBT) as reference material were subjected to differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), thermogravimetrical analysis (TGA) and heat conductivity measurements. The dispersion of the grapheme nanoplatelets was characterized by transmission electron microscopy (TEM). It was established that the partly exfoliated graphene worked as nucleating agent for crystallization, acted as very efficient reinforcing agent (the storage modulus at room temperature was increased by 39 and 89% by incorporating 1 and 5 wt.% graphene, respectively). Graphene incorporation markedly enhanced the heat conductivity but did not influence the TGA behaviour due to the not proper exfoliation except the ash content

    Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters

    Full text link
    (Abridged) Theoretical models that include only gravitationally-driven processes fail to match the observed mean X-ray properties of clusters. As a result, there has recently been increased interest in models in which either radiative cooling or entropy injection play a central role in mediating the properties of the intracluster medium. Both sets of models give reasonable fits to the mean properties of clusters, but cooling only models result in fractions of cold baryons in excess of observationally established limits and the simplest entropy injection models do not treat the "cooling core" structure present in many clusters and cannot account for entropy profiles revealed by recent X-ray observations. We consider models that marry radiative cooling with entropy injection, and confront model predictions for the global and structural properties of massive clusters with the latest X-ray data. The models successfully and simultaneously reproduce the observed L-T and L-M relations, yield detailed entropy, surface brightness, and temperature profiles in excellent agreement with observations, and predict a cooled gas fraction that is consistent with observational constraints. The model also provides a possible explanation for the significant intrinsic scatter present in the L-T and L-M relations and provides a natural way of distinguishing between clusters classically identified as "cooling flow" clusters and dynamically relaxed "non-cooling flow" clusters. The former correspond to systems that had only mild levels (< 300 keV cm^2) of entropy injection, while the latter are identified as systems that had much higher entropy injection. This is borne out by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical Journa

    OP2-Clang : a source-to-source translator using Clang/LLVM LibTooling

    Get PDF
    Domain Specific Languages or Active Library frameworks have recently emerged as an important method for gaining performance portability, where an application can be efficiently executed on a wide range of HPC architectures without significant manual modifications. Embedded DSLs such as OP2, provides an API embedded in general purpose languages such as C/C++/Fortran. They rely on source-to-source translation and code refactorization to translate the higher-level API calls to platform specific parallel implementations. OP2 targets the solution of unstructured-mesh computations, where it can generate a variety of parallel implementations for execution on architectures such as CPUs, GPUs, distributed memory clusters and heterogeneous processors making use of a wide range of platform specific optimizations. Compiler tool-chains supporting source-to-source translation of code written in mainstream languages currently lack the capabilities to carry out such wide-ranging code transformations. Clang/LLVM’s Tooling library (LibTooling) has long been touted as having such capabilities but have only demonstrated its use in simple source refactoring tasks. In this paper we introduce OP2-Clang, a source-to-source translator based on LibTooling, for OP2’s C/C++ API, capable of generating target parallel code based on SIMD, OpenMP, CUDA and their combinations with MPI. OP2-Clang is designed to significantly reduce maintenance, particularly making it easy to be extended to generate new parallelizations and optimizations for hardware platforms. In this research, we demonstrate its capabilities including (1) the use of LibTooling’s AST matchers together with a simple strategy that use parallelization templates or skeletons to significantly reduce the complexity of generating radically different and transformed target code and (2) chart the challenges and solution to generating optimized parallelizations for OpenMP, SIMD and CUDA. Results indicate that OP2-Clang produces near-identical parallel code to that of OP2’s current source-to-source translator. We believe that the lessons learnt in OP2-Clang can be readily applied to developing other similar source-to-source translators, particularly for DSLs

    Flux pile-up and plasma depletion at the high latitude dayside magnetopause during southward interplanetary magnetic field: a cluster event study

    Get PDF
    An event of strong flux pile-up and plasma depletion at the high latitude magnetopause tailward of the cusp has been analyzed based on observations by the suite of Cluster spacecraft. The multi-satellite analysis facilitates the separation of temporal and spatial features and provides a direct estimate for the strength of the plasma depletion layer for this event. A doubling of the magnetic field strength and a forty percent reduction of the density are found. Our analysis shows that roughly half of the total magnetic field increase occurs within 0.6 RE of the magnetopause and another quarter within a distance of 1.2 RE. In addition, the plasma depletion signatures exhibit temporal variations which we relate to magnetopause dynamics.&lt;br&gt;&lt;br&gt; &lt;b&gt;Keywords.&lt;/b&gt; Magnetospheric physics (Magnetopause, Cusp and boundary layers; Magnetosheath; Solar windmagnetosphere interactions

    OP2-Clang : a source-to-source translator using Clang/LLVM LibTooling

    Get PDF
    Domain Specific Languages or Active Library frameworks have recently emerged as an important method for gaining performance portability, where an application can be efficiently executed on a wide range of HPC architectures without significant manual modifications. Embedded DSLs such as OP2, provides an API embedded in general purpose languages such as C/C++/Fortran. They rely on source-to-source translation and code refactorization to translate the higher-level API calls to platform specific parallel implementations. OP2 targets the solution of unstructured-mesh computations, where it can generate a variety of parallel implementations for execution on architectures such as CPUs, GPUs, distributed memory clusters and heterogeneous processors making use of a wide range of platform specific optimizations. Compiler tool-chains supporting source-to-source translation of code written in mainstream languages currently lack the capabilities to carry out such wide-ranging code transformations. Clang/LLVM’s Tooling library (LibTooling) has long been touted as having such capabilities but have only demonstrated its use in simple source refactoring tasks. In this paper we introduce OP2-Clang, a source-to-source translator based on LibTooling, for OP2’s C/C++ API, capable of generating target parallel code based on SIMD, OpenMP, CUDA and their combinations with MPI. OP2-Clang is designed to significantly reduce maintenance, particularly making it easy to be extended to generate new parallelizations and optimizations for hardware platforms. In this research, we demonstrate its capabilities including (1) the use of LibTooling’s AST matchers together with a simple strategy that use parallelization templates or skeletons to significantly reduce the complexity of generating radically different and transformed target code and (2) chart the challenges and solution to generating optimized parallelizations for OpenMP, SIMD and CUDA. Results indicate that OP2-Clang produces near-identical parallel code to that of OP2’s current source-to-source translator. We believe that the lessons learnt in OP2-Clang can be readily applied to developing other similar source-to-source translators, particularly for DSLs
    • …
    corecore